A Precise Electrical Disturbance Generator for Neural Network Training with Real Level Output

نویسندگان

  • Antonio García
  • Carlos León
  • Iñigo Monedero
  • Jorge Ropero
چکیده

Power Quality is defined as the study of the quality of electric power lines. The detection and classification of the different disturbances which cause power quality problems is a difficult task which requires a high level of engineering expertise. Thus, neural networks are usually a good choice for the detection and classification of these disturbances. This paper describes a powerful tool, developed by the Institute for Natural Resources and Agrobiology at the Scientific Research Council (CSIC) and the Electronic Technology Department at the University of Seville, which generates electrical patterns of disturbances for the training of neural networks for PQ tasks. This system has been expanded to other applications (as comparative test between PQ meters, or test of effects of power-line disturbances on equipment) through the addition of a specifically developed high fidelity power amplifier, which allows the generation of disturbed signals at real levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Identification of Armature, Field and Saturated Parameters of Arizona

A novel technique to estimate and model rotorbody parameters of a large steam turbine-generator from real time disturbance data is presented. For each set of disturbance data collected at different operating conditions, the rotor body parameters of the generator are estimated using an Output Error Method (OEM). Artificial neural network (ANN) based estimators are later used to model the non-lin...

متن کامل

Utilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations

This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007